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What is this course about?
CMPT 476: CMPT 478:



What is this course about?

“Quantum software”

1. Software that runs on a quantum computer (circuits)

2. Software that helps produce circuits (compilers)
a. Circuit synthesis

b. Circuit optimization

c. Fault tolerance

d. Hardware routing

e. Programming languages

See also the Oxford course https://www.cs.ox.ac.uk/teaching/courses/2023-2024/qsoft/



Why quantum software?

We are here

Need software for these



Why quantum software?

NISQ (near-term noisy intermediate scale QC)

- Hybrid quantum-classical optimization algs

- Software necessary for

- Routing

- Error mitigation (NOT error correction)

- Compiling ansatz (variational circuit template)



But why quantum software?

Expectation: Reality:



Resource estimation

- 2010’s: research shifted from showing 
theoretical to practical advantage

- Goal is to find crossover points where a 
quantum algorithm will outperform 
classical

Found it was actually hard to compile algorithms in practice, and 
the results were extremely pessimistic

Threshold of tractability



Quantum overheads



Goals for quantum computer scientists

- Reduce the resources necessary to run algorithms (compilation/optimization)
- Reduce difficult of estimation (programming languages/software tooling)
- Reduce uncertainty in results (verification)
- Figure out how to run the damn things on hardware

Last ~15 years have seen significant progress in all of the above!

(and that’s where this course begins…)



Course history

2022: 2025:



Format of the course

- Seminar style
- Each week read 2-3 papers & discuss
- I’ll ask one of you to summarize & kick-off discussion for each paper
- Lectures as needed to introduce topics & background

- Topics (tentative)
- Circuit theory (background, 1-2 weeks)
- Circuit compilation (2-3 weeks)
- Circuit routing (1 week)
- Circuit optimization (2-3 weeks + background on circuit representations)
- Verification & simulation (1-2 weeks)
- Programming languages

I’m flexible: let me know what you’re most interested in!!!

Website: 
https://www.cs.sfu.ca/~meamy/Teaching/cmpt981/index.html



Grading

- 40% project
- Research project related to the course (can be in small groups)
- Tentative milestones:

- Feb. 27th: Propose your project
- Apr. 11th: Project is due

- 10% class participation
- Discussion & summaries

- 25% homework
- 1-2 assignments which will involve some coding
- Short (1-2 paragraph) paper reviews

- 25% presentation
- Presenting a research paper of your choice towards the end of the term



Today’s agenda

■ Review of quantum information
■ Review of the circuit model & circuit diagrams
■ Overview of quantum compilation



Quantum information review



What are quantum circuits?

1. “Assembly language” for quantum processors? 
2. Theoretical model of (quantum) computation?
3. Diagrammatic language for quantum theory?
4. Particular factorizations of a matrix?
5. All of the above? ✅

Qubit or 
system

Gate



Quantum theory = S.C.U.M.

S - States are unit vectors in a Hilbert space

C - Compound systems are described by the tensor product

U - Time evolution is unitary

M - Measurement probabilities follow the Born rule

Quantum circuits = diagrammatic language of quantum theory



States

A Hilbert space is a (finite dimensional for our purposes) Complex vector space

Write a state as a ket 



Inner products

Standard inner product on a Hilbert space is

A bra       denotes the linear functional

Concretely, it is represented by the conjugate transpose (dagger)

Complex conjugate



Bases

- For Cd, denote the elementary basis vectors by

- Vectors in a particular orthonormal basis are classical states
- A quantum state is viewed as a superposition of classical states

- Useful to remember:

Amplitude of state |i>



State postulate

QC Postulate #1

The state of an isolated system is described by a unit vector in a  
      Hilbert space



Tensor product

Given vector spaces V & W, the tensor product V⊗W is a vector space with a 
bi-linear map

If V and W have orthonormal bases {|ei>}, {|fj>}, then V⊗W has an orthonormal 
basis {|ei>⊗|fj>}



Properties of tensor products

Given two states, their tensor product is

(associative)

(left linear)

(right linear)

(scalar mult)

Recall: inner 
products are 
similarly bi-linear

Note: The below are equivalent



Compound system postulate

QC Postulate #2

The combined state of systems with state spaces V & W is a unit vector in  
        V⊗W

Qubits: systems with 2-dimensional states

- n qubits has state space 
- “Everything works out”: 

= 10 in binary



Linear operators

A linear operator from V to W is an operator which is linear…

Since we work in finite dimensions, typically define a linear operator uniquely by 
its action on a basis of V:



Outer products

The outer product                                                      is convenient for building 
and decomposing linear operators

Fact: 
        given two VS V, W with bases {|ei>}, {|fj>}, a linear operator T:V -> W can 
        be represented by its matrix over those bases,



(Some) Classes of operators

- Normal: AA†=A†A
- Unitary: UU† = I = U†U
- Hermitian: H† = H
- Projector: P2=P

Recall:

Observe that a unitary operator 
is invertible…



Time evolution postulate

QC Postulate #3
      The physical evolution of a closed system is described by a unitary operator
      acting on its Hilbert space

Write a unitary operator as a circuit built from smaller operators



How do we build circuits?

Circuits (operators) can be composed sequentially or in parallel

For U : X → Y, V : Y → Z                                      Diagrammatically,

        (Sequential) VU   : X → Z

        
        (Parallel) U⊗V : X⊗Y → Y⊗Z

U V

U

V



(Unitary) circuit over a gate set

Algebraic view:
    given an inverse-closed set G of unitary gates gi : Vi → Vi, a circuit over G is 
    a well-formed term over the signature (G, I, ⋅, ⊗, †)

Notes:
   (G, I, ⋅, †) — is a group(-oid, since ⋅ is partial)
   (G, I, ⊗)  — is a monoid (⊗ is total here)

Often fix V
i
 = C^{2^n} for all i and view  (G, I, ⋅, †) as a group



Examples

Pauli

Clifford

non-Clifford



Gate sets as groups



Aside: symmetries

The difference between

is usually not important, so we often assume a symmetric monoidal structure, 
that is the order of Hilbert spaces can be rearranged freely via SWAPs 

U

V

V

U

=σ
A,B



Aside: Dagger symmetric monoidal categories

                     = well formed terms over the signature (G, I, σ, ⋅, ⊗, †)

- Prototypical model is finite dimensional Hilbert spaces (FdHilb)
- But we’ll see other models which serve to interpret circuits!

- Graphical language is the language of quantum circuits
- Axiomatizes properties of the kronecker product & hermitian adjoint, e.g.



Measurement postulate pt 1

Given a system in the state                           , a complete measurement in basis 
{|ei>} produces two things:

■ Result “i” 
■ The state |ei>

with probability 
Graphically, Classical outcome



Measurement postulate pt 2

Given a set of measurement operators {Mi} such that

the measurement (incomplete if not every Mi
†Mi is rank 1) of |ψ> produces

■ Result i
■ State 

with probability



Projective measurement

■ Given a basis {|ei>}, set Mi = |ei><ei|
■ Then each Mi is Hermitian & a projector with
■ Resulting measurement projects & normalizes onto the state |ei> w/ prob 

Useful fact:
Computational (i.e. {|i>}) basis measurements + unitary transformations

       suffice to implement any projective measurement



Example: partial measurement



Aside: global phase invariance

■ Two states which differ by a global phase are indistinguishable, i.e.

■ Two states which differ by a relative phase are distinguishable, i.e. 



The quantum circuit model



The quantum circuit model

U

0

0

0

Some big unitary



Compilation

■ Simplest form: take the big unitary U (itself possibly a circuit) and write it 
over an intended gate set



A bit more accurate

The layered reality:

High-level algorithm

High-level circuit

Low-level circuit

Error corrected circuit

Physical layout

Hamiltonians, oracles, classical 
control

Multiply-controlled Toffolis, 
Pauli exponentials

Clifford+T, single qubit + CNOT

Select distance of QECC, map 
logical gates to physical,
MSD & gate teleportation

Scheduling, mapping to connectivity 
constraints of hardware



What makes a gate set?

1. Should be universal
2. Should be efficient
3. Should be implementable

a. Hardware layer ⇒ implementable directly on the physical media, usually by some control pulses
b. Logical layer ⇒ implementable directly on encoded data (more on this later)

Hardware Logical



The classical case

■ State of a bit is 0 or 1
■ State of n bits is an n-bit string x1x2…xn
■ Function is a map from n-bit strings to m-bit strings
■ Classical gates:



Classical universality

A gate set G is universal for classical computing if any function 
f:{0,1}n → {0,1}m from n bits to m bits can be implemented by a circuit over G

Theorem: {AND, XOR, NOT, FANOUT} is universal



The reversible case

■ Quantum computing includes (and relies on) classical computation
■ But unitary operators are invertible

■ Problem: AND gate is not invertible!
■ Dissipating 1 bit of information dissipates KBT ln 2 J of energy (Landauer’s principle)

■ Instead use a reversible embedding of the AND (Toffoli) + ancillas

x

y

z

x

y

z+xy

x

y

0

x

y

xy

ancilla



Classical universality for QC

Theorem: {TOFFOLI + ancillas} is universal for reversible computation



Resource usage

■ For a classical circuit using space S & time T, reversible version uses space 
O(S + T) and time O(T)

■ How to reclaim space at the end? Bennett trick



Pebble games (1st real compilation “technique”)

■ Classic problem in computer science
■ Given a DAG, try to place pebbles on out-going nodes using the minimum 

number of intermediate pebbles
■ A node can only be pebbled if its predecessors are pebbled



Time vs. space trade-off in RC

■ No consideration for pebbling results in this:

■ Other extreme uses exponential time



Bennett’s pebble games

Theorem (Bennett 1989): a classical computation with space S and time T can be 
implemented reversibly with

■ Space O(S log T) & time O(T1 + e), or
■ Space O(STe) & time O(T)



A note on reversible vs quantum compilation

■ Reversible computation forms bulk of most algorithm implementations
■ Notable exceptions: NISQ algorithms & Trotterization-based Hamiltonian simulation

■ Most algorithms rely on a classical sub-routine performed in superposition
■ Shor: Modular exponentiation
■ Search/Grover: Evaluation of the classical search function
■ QSP/LCU-based Hamiltonian simulation: Giant multiplexor
■ Quantum walks: Adjacency computation on a graph

Optimizing & compiling classical computation 
is the main job for most high-level compilers


