CMPT 478/981 Spring 2025
Quantum Circuits & Compilation

Matt Amy

What is this course about?

CMPT 476: CMPT 478:

Quantum
Computation
and Quantum

Information

Quantum
Computation
and Quantum

Information

MICHAEL A. NIELSEN MICHAEL A. NIELSEN |
¢85, and ISAAC L. CHUANG ¢85, and ISAAC L. CHUANG

What is this course about?

“Quantum software”

Software that runs on a quantum computer (circuits)

Software that helps produce circuits (compilers)
a. Circuit synthesis
b. Circuit optimization
c. Fault tolerance
d. Hardware routing
e. Programming languages

See also the Oxford course https://www.cs.ox.ac.uk/teaching/courses/2023-2024/qgsoft/

Why quantum software?

Our quantum
computing roadmap

Our focus is to unlock the full potential of quantum computing

by developing a large-scale computer capable of complex,
error-corrected computations. We're guided by a roadmap
featuring six milestones that will lead us toward top-quality quantum
computing hardware and software for meaningful applications.

> o @

Need software for these

O Q- O O O

Milestone 1 Milestone 3 Milestone 4 Milestone 5 Milestone 6

Beyond classical Quantum Building a long-lived Creating a Engineering corrected
error correction logical qubit logical gate scale up

Priysical Qubats 54 Prysical Oubits: 10

Logical Qubit Erroe Rate

Cubits: 10*

Logical Qubit Error Rate: 10

Quibit Error Rate: 10+

We are here

e —
Logical Oublt Error Rate: 10

Tyscal Qubits: 104 Priysicsl Qubits: 10*
Logical Qubit Ervor Rate: 10*

Logical Qubit Error Rate: 10

Why quantum software?

NISQ (near-term noisy intermediate scale QC)

Hybrid quantum-classical optimization algs
Software necessary for

- Routing
Error mitigation (NOT error correction)
Compiling ansatz (variational circuit template)

But why quantum software?

Expectation:

by: Elliot Williams

78 Comments

September 29, 2015

readable by anyone who happened to be listening. No more HTTPS, no r

ur 1 little bit I-fi, but that's exactly the scenario that cryptographers interested in
post-quantum crypto are working to save us from. And although the (potential) threat

uantur mputing to cryptography s already well-known, this summer has seen a

Reality:

Physicists demonstrate that 15=3x5 about

half of the time

19 August 2012

The device in the photomicrograph was used to run the
first solid-state demonstration of Shor's algorithm. It is
made up of four phase qubits and five superconducting
resonators, for a total of nine engineered quantum
elements. The quantum processor measures one
quarter inch square. Credit: UCSB

never been done before," said Erik Lucero, the
paper's lead author. Now a postdoctoral researcher
in experimental quantum computing at IBM, Lucero
was a doctoral student in physics at UCSB when
the research was conducted and the paper was
written.

"What is important is that the concepts used in
factoring this small number remain the same when
factoring much larger numbers," said Andrew
Cleland, a professor of physics at UCSB and a
collaborator on the experiment. "We just need to
scale up the size of this processor to something
much larger. This won't be easy, but the path
forward is clear."

Practical applications motivated the research,
according to Lucero, who explained that factoring
very large numbers is at the heart of cybersecurity
protocols, such as the most common form of

Resource estimation

I T
—e— Classical

2010’s: research shifted from showing e Quantum
theoretical to practical advantage

crossover point

Run time

Goal is to find crossover points where a
quantum algorithm will outperform

classical

Threshold of tractability
Instance size

Found it was actually hard to compile algorithms in practice, and
the results were extremely pessimistic

Quantum overheads

Physical

Algorithm Logical

Goals for guantum computer scientists

Reduce the resources necessary to run algorithms (compilation/optimization)
Reduce difficult of estimation (programming languages/software tooling)
Reduce uncertainty in results (verification)

Figure out how to run the damn things on hardware

Last ~15 years have seen significant progress in all of the above!

(and that’s where this course begins...)

o0

® O
%
Q

>~

. -

O

=

2D

e

Q

(Vp)

. -

o 4

@ 'S

Format of the course

Website:
https://www.cs.sfu.ca/~meamy/Teaching/cmpt981/index.html

Seminar style
- Each week read 2-3 papers & discuss
- I’ll ask one of you to summarize & kick-off discussion for each paper
- Lectures as needed to introduce topics & background

Toplcs (tentative)
Circuit theory (background, 1-2 weeks)
- Circuit compilation (2-3 weeks)
- Circuit routing (1 week)
- Circuit optimization (2-3 weeks + background on circuit representations)
- Verification & simulation (1-2 weeks)
- Programming languages

I’m flexible: let me know what you’re most interested in!!!

Grading

40% project

Research project related to the course (can be in small groups)
Tentative milestones:

Feb. 27th: Propose your project

Apr. 11th: Project is due

10% class participation

Discussion & summaries

25% homework

1-2 assignments which will involve some coding
Short (1-2 paragraph) paper reviews

25% presentation

Presenting a research paper of your choice towards the end of the term

Today’s agenda

Review of quantum information
Review of the circuit model & circuit diagrams
Overview of quantum compilation

|w1) —E

|2}

El

|2)

What are quantum circuits?

Qubit or TP T —P— TP Tt

system \ T

T /L i Gate
H—ee—®— T —&O—e—THH —

Time
“Assembly language” for quantum processors?
Theoretical model of (quantum) computation?
Diagrammatic language for quantum theory?
Particular factorizations of a matrix?

All of the above?

Quantum theory = S.C.U.M.

S - States are unit vectors in a Hilbert space

C - Compound systems are described by the tensor product
U - Time evolution is unitary

M - Measurement probabilities follow the Born rule

Quantum circuits = diagrammatic language of quantum theory

States

A Hilbert space is a (finite dimensional for our purposes) Complex vector space

H = C¢

Write a state as a ket

al
a2

) € cd

aq

Inner products

:)) Complex conjugate
Standard inner product on a Hilbert space is /

(0, 0) = >_; aib;
A bra (1)|denotes the linear functional

(W] = @) = (V]@) = (¢, P)

Concretely, it is represented by the conjugate transpose (dagger)

af af -+ ag] = (W] = (|9)

Bases

For C¢, denote the elementary basis vectors by

1] 0] 0]
| 0 1 | 0
) =e=|.[, H=ea=]1], - ld-L=e1=]|,

0 0 1

Vectors in a particular orthonormal basis are classical states
A quantum state is viewed as a superposition of classical states

) = Zi Amplitude of state |i>

Useful to remember: 0 ifi#j
(ilg) =

1 otherwise

State postulate

QC Postulate #1

The state of an isolated system is described by a unit vector in a
Hilbert space

Tensor product

Given vector spaces V & W, the tensor product V®W is a vector space with a
bi-linear map

Q:VXW-=>VW
veVwelW —= vw e VW

If V and W have orthonormal bases {|e>}, {|fj>}, then V®W has an orthonormal
basis {|ei>®|fj>}

Properties of tensor products

(S - Cl) ® b = S(Cl X b) (scalar mult)
(a®b)®c=a®(b®c) (associative)
(a + b) Re=a@Rc+bRc (leftlinear) Recall: inner

products are

a ® (b —+ C) = ® b + a ® C (right linear) similarly bi-linear

Given two states, their tensor product 1s

(25 aile))®(2_; 01 f5)) = 224 aibjlen) @ £;)

Note: The below are equivalent
iy ® 15) = |i, 5) = |ij)

Compound system postulate

QC Postulate #2

The combined state of systems with state spaces V & W is a unit vector in
Vew

Qubits: systems with 2-dimensional states
n qubits has state space C2®---® C2 ~ C?

“Everything works out™:
0] =10 in binary
0 . /

@) =0)=|;| =12

().

Linear operators

A linear operator from V to W 1s an operator which is linear...

T(aly) + Bl¢)) = aT|) + BT|¢)

Since we work 1n finite dimensions, typically define a linear operator uniquely by
its action on a basis of V:

X :C? = C? 7 :C? — C?
0) — [1) 0) — |0)
1) — [0) 1) — —1)

Outer products

The outer product |1)){(¢| : [x) — ({}]x))|1) is convenient for building
and decomposing linear operators

Fact:
given two VS V, W with bases {|e>}, {|fj>}, a linear operator T:V -> W can
be represented by its matrix over those bases,

T =%, Tifi)eil

(Some) Classes of operators

Normal: AAT=ATA
Unitary: UUT=1=U'U

Projector: P?>=P is invertible...

Recall: Al = (A%

a b T_ a* c*
cdl |b* df

Time evolution postulate

QC Postulate #3
The physical evolution of a closed system is described by a unitary operator
acting on its Hilbert space

Write a unitary operator as a circuit built from smaller operators

—TOTT”T\TOTT?

T
— H ® D T ® T H

N

How do we build circuits?

Circuits (operators) can be composed sequentially or in parallel

ForU: X—=Y,V:Y—>Z Diagrammatically,
(Sequential) VU : X — Z Y v
U
(Parallel) UsV : XY — YeoZ
EF EF v
A® B ®
AB]_[EF G H G H
lc* D]@){G H] colBFl pelE F
G H G H

(Unitary) circuit over a gate set

Algebraic view:
given an inverse-closed set G of unitary gates g. - V. — V., a circuit over G is
a well-formed term over the signature (G, I, -, ®, ")

Notes:
(G, L, -, ") — is a group(-oid, since - is partial)

(G, I, ® — is a monoid (® is total here)

Often fix V.= CM2~n} for alli and view (G, 1, -,) as a group

Examples

Pauli
01 0 —i 1 0
X = _ _
[1 0] r [z 0] 4 [0 —1]
7 [t L 111 100 | g
S \/E [O Z] H —2 [1 _1] CNOT = |0 0 o1 Clifford
0010

T = \/§ o [1 (.0] non-Clifford

Gate sets as groups

Aside: symmetries

The difference between

1s usually not important, so we often assume a symmetric monoidal structure,
that is the order of Hilbert spaces can be rearranged freely via SWAPs

oap: AQB— B®A

| Opp |- = ><

Aside: Dagger symmetric monoidal categories

= well formed terms over the signature (G, I, 0, -, ®, ")

Prototypical model is finite dimensional Hilbert spaces (FdHilb)

But we’ll see other models which serve to interpret circuits!

Graphical language is the language of quantum circuits
Axiomatizes properties of the kronecker product & hermitian adjoint, e.g.

(AN = A
(A B) = A" ® B!
(AB)! = BTA

Measurement postulate pt 1

Given a system in the state [¢) = E ailei), a complete measurement in basis

{le>} produces two things:

Result “1”
The state |e.>

with probability |(e;|¢)|* = |a;

| 2

Graphically,

Classical outcome

—

/X

Measurement postulate pt 2

Given a set of measurement operators {M.} such that

Z A[zr M; =1

i
the measurement (incomplete if not every MiTMi is rank 1) of |y> produces

Result 1

with probability p(i) = (V| M M;|)

Projective measurement

Given a basis {|e>}, set M. = [e><e |
Then each M. is Hermitian & a projector with Z M} M; =1
Resulting measurement projects & normalizes orito the state le> w/ prob

MIM;|p) = Wle){el) = [(eilv)]?

(¥

Useful fact:
Computational (i.e. {|i>}) basis measurements + unitary transformations
suffice to implement any projective measurement

Example: partial measurement

Aside: global phase invariance
Two states which differ by a global phase are indistinguishable, 1.e.
) = €”|¢)

Two states which differ by a relative phase are distinguishable, 1.e.

(Olp) = (0lg), (L|v) = €e"(1|9)

|z1) —E

|72} E
I$3) 1 | |
1) H : i _@ E E o

The quantum circuit model

° U o
° °
° °
0 | \
\

Some big unitary

Compilation

Simplest form: take the big unitary U (itself possibly a circuit) and write it
over an intended gate set

A bit more accurate

The layered reality:

Hamiltonians, oracles, classical

/ control
[High-level algorithm

. Multiply-controlled Toffolis,
[High-level circuit]

Pauli exponentials

(N\

Low-level circuit - Clifford+T, single qubit + CNOT
Error corrected circuit | ——— | Selectdistance of QECC, map
g logical gates to physical,
[) MSD & gate teleportation

Physical layout
\ Scheduling, mapping to connectivity

constraints of hardware

What makes a gate set?

Should be universal
Should be efficient
Should be implementable

a. Hardware layer = implementable directly on the physical media, usually by some control pulses
b. Logical layer = implementable directly on encoded data (more on this later)

Hardware Logical
e 0 0 0 (100 0]
0 0 €2 0 0 010 0
°X ——Z®Z = .0 , p—
y ‘2) 0 0 €2 0 ¢z 001 0
0 0 0 e 000 —1

The classical case

State of a bit 1s 0 or 1
State of n bits is an n-bit string x1x2...xn
Function 1s a map from n-bit strings to m-bit strings

Classical gates:

Classical universality

A gate set G is universal for classical computing if any function
f:{0,1}" — {0,1}™ from n bits to m bits can be implemented by a circuit over G

Theorem: {AND, XOR, NOT, FANOUT} i1s universal

The reversible case

Quantum computing includes (and relies on) classical computation

But unitary operators are invertible

m Problem: AND gate is not invertible!
= Dissipating 1 bit of information dissipates KT In 2 J of energy (Landauer’s principle)

Instead use a reversible embedding of the AND (Toffol1) + ancillas
X —@— X X —@— X

y —®—y y —@— vy

2~ zaxy 0 (D xy

ancilla

Classical universality for QC

Theorem: {TOFFOLI + ancillas} 1s universal for reversible computation

Resource usage

For a classical circuit using space S & time T, reversible version uses space
O(S + T) and time O(T)
How to reclaim space at the end? Bennett trick

Xy 7 = X
U =
Xn 7~ d ! — Xn
0 —F— — 0
Copy
0 — — f(xl xn)

Pe b b I e ga m eS (1st real compilation “technique”)

Classic problem in computer science

Given a DAG, try to place pebbles on out-going nodes using the minimum
number of intermediate pebbles

A node can only be pebbled if its predecessors are pebbled

Time vs. space trade-off in RC

= No consideration for pebbling results in this:

= Other extreme uses exponential time

Bennett’s pebble games

Theorem (Bennett 1989): a classical computation with space S and time T can be
implemented reversibly with

Space O(S log T) & time O(T'! " ¢), or
Space O(ST°) & time O(T)

A note on reversible vs qguantum compilation

Reversible computation forms bulk of most algorithm implementations

Notable exceptions: NISQ algorithms & Trotterization-based Hamiltonian simulation

Most algorithms rely on a classical sub-routine performed in superposition

Shor: Modular exponentiation

Search/Grover: Evaluation of the classical search function
QSP/LCU-based Hamiltonian simulation: Giant multiplexor
Quantum walks: Adjacency computation on a graph

Optimizing & compiling classical computation
is the main job for most high-level compilers

